Extended Abstract

Motivation Offline goal-conditioned RL (GCRL) can leverage large amount of weakly-labeled
or reward-free trajectories to learn goal-conditioned policies, but the resulting value functions are
sometimes noisy. Hierarchical Implicit Q-Learning (HIQL) mitigates this by treating the value
function as a latent “planner” and extracting hierarchical policies from it. However, we find HIQL
also fails in more complex environments because its state—goal embedding is co-trained with the same
noisy value estimates, letting representation errors propagate into the sub-goal space and negatively
affect downstream control. In this project, we ask: Can we improve HIQL by replacing its embedding
with an independently-learned state—goal encoder?

Method In HIQL, a value function is first learned through GCIVL, after which a pair of hierarchical
policies are extracted with an AWR objective: a high-level policy 7" (qﬁ(sH_ k) ’ s, g) that produces a

sub-goal embedding and a low-level policy 7' (a | S, P(set k)) that chooses the action to complete that
sub-goal, where ¢ is the embedding co-trained with the value function. We instead pre-train a pair of
state- and goal-encoders ¢’ and ¢’ with a contrastive objective on offline data, replace the original
encoder, and keep them frozen during subsequent value learning and policy extraction; the resulting
policies become 7" (¢'(s4x) | ¢'(s),¢'(9)) and 7' (a | ¢'(s),v(s¢+x)). trained in the same way
as in the original framework, and we expect these pre-trained contrastive encoders to give helpful
signals that improve value estimation and downstream hierarchical learning.

Implementation We implement contrastive pre-training by sampling mini-batches of triples
(u,v™,v7) from the offline data, where v is a state reachable from v within H steps and v~
is a state that lies beyond H steps; both are selected without using rewards and (u, v+, v™) are from
the same trajectory. Training maximizes the contrastive objective log o( ¢’ (u)" ¢’ (v")/7) + log(1 —

o(¢'(u) ¢’ (v™) /7)), i.e. it explicitly increases the dot product between positive pairs while reducing
it for negative pairs; We tested our methods on OGBench, an offline goal-conditioned RL benchmark
which consists of different tasks and data types. For each task, the pretraining takes about 40 minutes
on 20k steps on an AWS g4.2xlarge instance. After pretraining, we replace the original encoder in
HIQL with the state goal encoders and keep them frozon during the value function learning and
policy extraction. Each single task result takes 2-4 hours to be evaluated.

Results Our method improves HIQL’s success rate across PointMaze, AntMaze, and Cube environ-
ments, with gains of up to 20-40% over GCBC and 10-15% over HIQL. In particular, we observe
strong performance in both dense (navigate) and sparse (explore, stitch) goal-reachability settings.
Our method have relative equivalent performance in HumanoidMaze, but high-DoF makes the task
difficult to learn through our method. Moreover, performance drops in multi-skill tasks such as
AntSoccer, where short, non-Markovian trajectories make contrastive supervision less effective.

Discussion The results demonstrate the effectiveness and benefits of decoupling representation
learning from noisy value signals in the original HIQL structure. However, current contrastive
pretraining is trajectory-local and limited in stitching across diverse behaviors. This may explain
weaker performance in complex tasks with discontinuous dynamics or multiple skills. Future
improvements could explore cross-trajectory pretraining and objectives that handle non-Markovian
noise or richer behavior structure.

Conclusion In conclusion, we show that pretraining goal representations using contrastive learning
improves downstream value learning and hierarchical policy extraction in offline GCRL. Our approach
achieves higher success rates across several benchmark tasks, highlighting the importance of robust
embeddings in hierarchical RL. This work opens up new directions for leveraging self-supervised
objectives to enhance policy learning in static, complex environments.
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Abstract

Offline goal-conditioned reinforcement learning (GCRL) can utilize large amounts
of unlabeled trajectories, yet the performance is often limited by the noisy value
estimates. Prior work (HIQL) extracts hierarchical policies by inferring sub-
goal embeddings directly from the value function, but this approach still fails
on tasks with more complex environments. In this project, We revisit HIQL
and strengthen its state-goal representation by decoupling embedding learning
from value learning. Specifically, we pre-train paired state and goal encoders
with a horizon-aware contrastive loss: states reachable within H steps are pulled
together, while those farther apart are pushed away. These frozen encoders replace
the original embedding in HIQL. Across diverse OGBench tasks, our pretrained
encoders improve navigation and exploration success rates by about 10 %. However,
it’s still limited on high-DoF humanoid mazes and skill-composition tasks, where
trajectories are either short, non-Markovian, or require stitching different behaviors.
Overall, our findings highlight both the promise of contrastive pretraining for offline
GCRL and the need for methods that better exploit non-Markovian or multi-skill
data.

1 Introduction

Recent advances in large language and vision models demonstrate the power of self-supervised
pre-training on unlabelled or weakly supervised data (Achiam et al., 2023 Radford et al., [2021)).
Analogously, offline goal-conditioned reinforcement learning (GCRL) exploits large stores of reward-
free trajectories to acquire goal-conditioned policies. However, value functions learned from such data
can be noisy, hindering the extraction of reliable low-level controllers (Park et al.,[2023)). Hierarchical
Implicit Q-Learning (HIQL) (Park et al., 2023)) addresses this limitation by first training a high-level
policy that predicts a sub-goal embedding, which is then supplied to a low-level policy to produce
actions. Although HIQL achieves strong results on many tasks, we observe its failures in purely
state-based environments where the inputs to the high-level policy are raw states rather than pre-
computed feature embeddings (Park et al.l 2025)). Prior work shows that contrastive representation
learning can uncover latent structure in large amount of data and yield high-quality embeddings for
downstream tasks (Radford et al., [2021). Building on this insight, we propose to enhance HIQL
by pre-training a state and goal encoders with a contrastive objective on the same unsupervised
trajectories, thereby providing more informative sub-goal embeddings and improving performance
on tasks where standard HIQL underperforms.

A core limitation of HIQL is that its state—goal embedding is learned jointly with the value function.
Although an embedding co-trained with the optimal value function V* would be optimal theoretically,
the value estimates obtained from offline trajectories are typically noisy and not optimal. These
errors distort the learned state embedding space, leading to inaccurate sub-goal representations
and degraded policies. We mitigate this issue by decoupling representation learning from value
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learning: before any value updates, we pre-train a state—goal encoder with a contrastive objective
that maximizes the dot product between a state s; and future states reachable within H steps, while
minimizing its similarity to states lying beyond this horizon. The resulting encoder replaces HIQL'’s
original representation module and is kept frozen during subsequent value-function training and
policy extraction. By injecting a horizon-aware signal, the contrastive encoder is expected to provide
more coherent sub-goal embeddings and improve overall policy performance on tasks where standard
HIQL underperforms.

We evaluated our approach on OGBench, an offline goal-conditioned RL benchmark that spans
navigation, locomotion, data-stitching, and robotic-control tasks. Across navigation and exploration
domains, the contrastive pre-trained encoder extracts informative signals from offline datasets,
improving HIQL’s success rate by roughly 10%. It’s limited, however, on tasks that need stitching
short trajectories or composing distinct skills on complex environment/controls, highlighting a
promising direction for future work.

2 Related Work

Offline RL aims to learn effective policies from pre-collected datasets without training on additional
environment interactions (Lange et al.| 2012 [Levine et al.l [2020). Previous works like Batch-
Constrained deep Q-learning (BCQ) (Fujimoto et al., [2019) and Conservative Q-Learning (CQL)
(Kumar et al., |2020) address the distribution shift between behavior policies and learned policies
by constraining policy updates or regularizing Q-values in offline RL. Implicit Q-Learning (IQL)
(Kostrikov et al.l [2021) relies on value-based learning with implicit behavior modeling for offline
learning.

Goal-Conditioned RL (GCRL) methods learn policies conditioned on specific goals, which enable
agents to learn and perform multiple tasks with specified goals and policies. Hindsight Experience
Replay (HER) (Andrychowicz et al., 2017} |Chebotar et al.;, 2021} |Fang et al.|[n. d.]; [Levy et al.| |2017;
Li et al.} 2020} Pong et al.| [2018; [Yang et al.,|2022) relabels failed trajectories with alternative goals
to enable sample-efficient learning. Universal Value Function Approximators (UVFA) (Schaul et al.,
2015)) incorporates goal information into value functions to learn goal-aware representations. Other
works also introduce algorithms based on various techniques like contrastive learning (Eysenbach
et al.,|2022} 2020; Zhang et al., 2021}, state occupancy matching (Durugkar et al.| 2021} Ma et al.,
2022al), and Goal-conditioned behavioral cloning (GCBC) (Lynch et al., 2020; |(Ghosh et al.l 2019a).

Offline Goal-Conditioned RL combines offline learning with goal-conditioned RL in order to
address the challenge of sparse rewards, distributional shifts, and invalid goal relableing in the static
datasets. Works like GoFAR (Ma et al., | 2022b) frames goal-reaching as a state-distribution matching
problem, GCSL (Ghosh et al., 2019b) treats GCRL as supervised-learning, and GOPlan (Ghosh et al.|
2019c)) generates trajectories conditioned on goals through learned diffusion models to have better
learned agents. The HIQL methods (Park et al.| 2023)), introduces a hierarchical approach that learns
a single goal-conditioned value function offline using IQL and builds a two level policy: a high-level
sub-goal generator and a low level goal-conditioned controller. However, it shows that the state-based
methods underperform compared to pixel-based ones.

Relevant Evaluation Benchmark To support and evaluate these methods, there are multiple works
evaluated methods on single tasks or behaviors (Myers et al., [2024; [Yang et al.l 2023)), but they
lack the comprehensive, standardized benchmark that exhaustively assesses various properties with
diverse tasks. recent benchmarks such as OGBench (Park et al., [2025) provide a diverse set of offline
datasets designed specifically for evaluating GCRL algorithms. These datasets vary by task type
(e.g., navigation, manipulation), data quality (e.g., expert, exploratory), and structure (e.g., stitched
sub-trajectories vs. full trajectories), enabling more systematic analysis of goal-reaching under offline
constraints. Our method builds on this foundation and aims to improve sub-goal representations by
learning more stable and informative embeddings, thereby enhancing the state and goal encoding in
the high-level policy.



3 Method

3.1 Preliminaries

3.1.1 Goal-conditioned Implicit V-learning

GCIVL is a goal-conditioned RL algorithm using the idea of implicit Q-learning (IQL) to learn a
value function using expectile regression. It fits a value function V (s, g) by minimizing the value
loss:

L(V) = ES,Q,S’NTU%(T(S’Q) + ’VV(S/,Q) - V(&g))},
where V is the target value function, 7(s,g) = 14(s) — 1 is the sparse goal-conditioned reward
function, and {3 () = [k — 1{4..<0} ()|2? is the expectile loss used in IQL. After learning the value
function, it extracts a goal-conditioned policy with the AWR objective:

\7AWR (7'(') = Es,a,s’,gmr[ea(V(S/ﬁg)i‘/(syg)) IOg W(a‘sa g)] .

3.1.2 Hierarchical Implicit Q-learning

HIQL is a hierarchical goal-conditioned RL method which contains two level policies: a high-level
policy 7" (¢ (s¢41)|$, g) which produces a subgoal embedding and a low-level policy 7! (als, ¢(s41))
which generates the next action to achieve the subgoal. It first learns a value function using GCIVL,
and then extract the policies with the following AWR objective:

T (00) = Esy s, 1,0)[exD(8 % (Voy (st4k,9) = Vou (5¢,9))) log 1, (6 (st+x) s, 9)],

T (0) = ]E(s,,,a,,,s,,ﬂ,sHk)[eXP(B * (V(JV (St41,8t4k) — Vo (5t, 5t41))) log W(lyl (at|se, ¢(3t+km~
Note that the extraction of the two policies are decoupled and independent from each other, while
they all depends on the value function. In the above equations, ¢ is the subgoal representation model
learned through the value function loss.

3.1.3 Contrastive representation learning

Recent studies show that contrastive learning excels at extracting rich representations from large-
scale data in both computer vision and natural language processing. The core idea is to learn two
encoders that pull positive (similar) input pairs together in representation space while pushing negative
(dissimilar) pairs apart. For a positive pair (u,v") and a negative pair (u,v™), we seek encoders
¢ and 1) that maximize the similarity ¢(u) "¢ (vt) and minimize ¢(u) "+ (v™). We will train the
representation models using the binary Noise-Contrastive Estimation (NCE) objective:

max Bt o 108 o{6(u) 0(0)) + log(1 - of(w) v (7)) . W

where o (-) denotes the sigmoid function.

3.2 Contrastive Goal Representation Pretraining

In HIQL, the goal representation ¢ is usually learned alongside the value function and then refined
and updated when extracting the actor. However, any over- or under-estimation in the value function
can bleed into ¢, distorting the goal space and hindering policy learning. Motivated by the recent
success of contrastive representation learning, we propose pretraining ¢ with a contrastive objective
on trajectory data to break this dependency, completely decoupled from the value-loss signal. We
expect a value-agnostic embedding to deliver richer, more stable goal features for subsequent value
estimation and actor extraction.

We train the state encoder ¢ and the goal encoder 1 by constructing contrastive state—goal pairs
(u,v) from the offline dataset D. An anchor state is drawn uniformly from all stored states, u =
st ~ pp(s), while a positive goal state is sampled from the same trajectory within a short horizon,
V=84 ~ Pp (st+7 [ s, 1 <7< H), and negative ones are sampled from states at least H + 1 time
steps ahead, v = s, ~ pp (st+7 | s, 7> H ) Optimizing a contrastive objective that pulls positive
pairs closer in representation space while pushing negative pairs apart produces goal embeddings
that encode short-horizon reachability without inheriting bias from value-function estimation. In
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Figure 1: We use contrastive learning to learn a state encoding model ¢ and a goal encoding model 1,
so that the representation of a H-reachable goal state is closer to the current anchor state than a non
H-reachable goal state.

summary, our contrastive objective is simply asking if the future state is H steps reachable from the
current state:

m;xx]E (s~p1>(s) ) {log o((s) " ¥(sg4)) + log(1l — a(qﬁ(s)Tw(sg_)))]
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After training the encoding models, we replace the encoding model ¢ in the original HIQL imple-
mentation with our trained state and goal encoding and keep them frozon during the value learning
and policy extraction process.

4 Experimental Setup

4.1 Dataset

We use OGBench benchmark, which contains multiple tasks for offline goal-conditioned RL evalua-

tion [Park et al.| (2025), for evaluating our methods.

4.1.1 Task Type

pointmaze

humanoidmaze antsoccer single

Figure 2: Dataset Task Type Demonstration. From left to right is: Pointmaze, Antmaze, Humaniod-
maze, Antsoccer, and Cube

The tasks we evaluated are the following tasks, which also shown in Figure [2}

* Pointmaze: This task is to control a 2D point mass agent to reach a goal location in a given
maze.

» Antmaze: This task is to control a quadrupedal Ant agent with 8 degrees of freedom to reach
a goal location in a given maze.



* Humanoidmaze: This task is to contraol a complex 21 degrees of freedom humanoid agent
to reach a goal location in a given maze.

* Antsoccer: This task build upon the simple maze navigation tasks, involves controlling an
Ant agent to dribble a scocer ball. It requires the agent not only to navigate to the correct
position, but also control the ball with it. The data provided with this task contains two part
of trajectories: one is maze navigation without the ball and another one is dribbling with the
ball near the agents.

* Cube: This task is to control a robot arm to pick and place the cube blocks into designed
configurations.

4.1.2 Data Type

All maze related tasks have various data type for training and evaluation process, as also shown in
Figure[3}

navigate stitch explore

Figure 3: Data Type Illustrations. From left to right is Navigate, Stitch, and Explore data type.

* Navigate: The standard dataset in the benchmark, collected by a noisy expert policy that
navigates the maze.

« Stitch: Different than navigate type, stitch data consists of short goal-reaching trajectories.
The agents need to stitch multiple trajectories together to complete the tasks.

» Explore: It consists of random exploratory trajectories, aiming to test whether the agent can
learn navigation skills from low quality data.

4.1.3 Task Size

There are multiple size and difficulty choices for tasks, the larger the task, the more difficult the task:

* For maze task, the maze size and difficulty we evaluated can be medium, large, and giant,
example mazes with different size are illustrated by Figure 4]

* For cube task, the number of cube we evaluated are single and double

* For antscoccer task, the scene difficulty we evaluated are arena and medium, which are
without obstacles and with obstacles, illustrated by Figure 5]

kel

medium large giant arena medium

Figure 4: Maze Task Data Size Illustration Figure 5: Antsoccer Task Data Size Illustration



4.2 Baseline

We evaluate our method against two primary baselines: GCBC (Goal-Conditioned Behavior Cloning)
and HIQL (Hierarchical Implicit Q-Learning), both of which are included in the OGBench benchmark.
GCBC serves as a simple behavior cloning baseline that directly maps state-goal pairs to actions
without leveraging any value function, while HIQL represents a more advanced hierarchical approach
that uses goal-conditioned value learning and subgoal generation. For consistency, we use the reported
performance of these baselines from the OGBench leaderboard where available. Additionally, we
re-implemented and ran HIQL on selected tasks to ensure the reproducibility of results and confirm
they fall within the reported performance range. This provides a reliable basis for assessing the
effectiveness of our proposed enhancements.

4.3 Evaluation Metric

In line with the OGBench evaluation protocol, we use success rate as our primary metric. Success
rate is defined as the percentage of evaluation episodes in which the agent successfully reaches the
specified goal state within the allowed time horizon. Each task is evaluated with varying initial
states and goals, and success is determined based on whether the final state lies within a predefined
threshold steps of the goal.

5 Results

Our experiments results are shown in Table[I] All the experiments are evaluated by succuss rate,
and we provide the results of GCBC and HIQL from the OGBench with average rate and standard
deviations. We also provide sample succuss trajectories in Appendix [A]

5.1 Quantitative Evaluation

For maze-related tasks, the results demonstrate that our method achieves performance that is
equivalent to or better than HIQL on both medium and large-scale navigation environments, while
significantly outperforming GCBC across the board. In PointMaze, our method achieves a success
rate of 98% on the medium-navigate task, compared to 79% for HIQL and 9% for GCBC. On
the large-stitch variant, our method reaches 23%, surpassing HIQL (13%) and GCBC (7%).
Similarly, in AntMaze, our method achieves 47 % on the medium-explore task, exceeding HIQL
(37%) and GCBC (2%), and scores 22% on the large-explore task, again significantly higher
than HIQL (4%) and GCBC (0%). These results highlight the effectiveness of our contrastive
pretraining approach in producing robust state and goal embeddings that generalize well across
spatially complex environments.

In the more challenging HumanoidMaze task, our method achieves a score of 2%, which is
comparable to HIQL’s 3%, while GCBC fails entirely (0%). This suggests our method retains
competence even in high-dimensional control scenarios. A detailed breakdown and discussion of this
result will follow in the next section.

For Cube tasks, our method clearly outperforms GCBC in both settings. On cube-single-play,
we achieve 23%, compared to 15% from HIQL and 6% from GCBC. On the more complex
cube-double-play, our method matches HIQL with a success rate of 6%, while GCBC lags behind
at 1% . These results suggest that our method not only enhances goal representation quality but also
generalizes effectively to tasks requiring precise object manipulation.

In contrast, for AntSoccer tasks, our method underperforms relative to both HIQL and GCBC. On
the medium-navigate variant, our method scores 0%, compared to 13% from HIQL and 2% from
GCBC. In the arena-stitch task, we achieve only 1%, whereas GCBC achieves 24% and HIQL
scores 15% . This outcome reveals a limitation of our current approach in multi-skill environments
that require coordination between navigation and dynamic object interaction like dribbling a ball. We
hypothesize that richer temporal dynamics or contact-aware representations may be necessary, and
explore this further in the following section.

Overall, these results indicate a strong potential of our contrastive goal pretraining method in
structured navigation and manipulation tasks, with particularly strong gains in maze and cube-based
environments.



Table 1: Experiments Results of Succuss Rate (in %) on Various Dataset. The GCBC and HIQL have
multiple runs and reported the average succuss rate with standard deviation. The highest performances

are bold.

Environment Dataset | GCBC  HIQL | Our Method

PointMaze pointmaze-medium-navigate-vO0 | 96  79+5 98
pointmaze-large-stitch-v0 7+£5 13+6 23

AntMaze antmaze-medium-explore-vQ 2+1 37+£10 47
antmaze-large-explore-v0 0£0 44+5 22

HumanoidMaze humanoidmaze-giant-stitch-vO | 0+ 0 3+£2 | 2

Cube cube-single-play-v0 612 15+£3 23
cube-double-play-v0 1+1 6+2 6

AntSoccer antsoccer-arena-stitch-v0 244+8 15+1 1
antsoccer-medium-navigate-v0 2+0 13+£2 0

5.2 Qualitative Analysis

1. PointMaze

(a) pointmaze-medium-navigate-v0 (navigate).

In this experiment, the offline data trajectories are long, expert-like trajectories which
densely populate the maze. This is ideal for contrastive learning because it can cover
most neighboring states, so the frozen encoder learns an almost Euclidean metric of
reachability. Decoupled from the value function noise, its additional positional signal
helps the value network and policies plan better. Hence we observe a gain (~ 9%) over
the original HIQL method.

(b) pointmaze-large-stitch-vO0 (stitch).

In this experiment the maze is larger, and the dataset contains only short, goal-directed
trajectories. During contrastive pre-training we sample state pairs solely within each
trajectory, so the encoder receives no supervision on “stitching” separate paths together.
Despite this limitation we still observe a ~ 10% boost over the baseline, likely because
the encoder captures the maze’s local geometry while the subsequent value- and policy-
learning stages learn to generalize across segments.

2. AntMaze

(a) antmaze-medium/large-explore-v0 (explore).

In this environment, data are random exploratory data covering the whole maze. Even
though the data contains noise, the global positional knowledge dominates the embed-
ding learning thus helps the value and policy learning.

3. HumanoidMaze

(a) humanoidmaze-giant-stitch-v0 (stitch).

In this task the contrastive encoder provides no benefit over original HIQL. The
agent struggles to maintain locomotion for more than a few steps because the training
set is composed of very short trajectories, while the 21-DoF humanoid dynamics
and the giant maze create an exceptionally complex landscape. Lacking long-range
positives, the encoder ends up modeling mainly local pose variations—not genuine
spatial progress—so it cannot help downstream value or policy learning.

4. Cube
(a) cube-single/double-play-v0

In the cube environment the agent controls a robotic arm that must set cubes at a target
pose, but the demonstrations are highly non-Markovian—many contain arbitrary pick-
and-place detours unrelated to task progress. With a single cube these distractions are
infrequent, so the contrastive encoder still extracts a useful task-space metric and boosts
learning. With two cubes, more and more different states are still reachable within H
steps, so the model ends up mixing genuine moves with random cube-shuffling and the



representation gets confused. Consequently the learned policy often oscillates between
picking up and dropping cubes instead of executing a coherent placement plan.

5. AntSoccer

(a) antsoccer-medium/arena-navigate/stitch-vO0.

In the AntSoccer task the agent must operate a robot ant while pushing a ball to the goal
position, but the dataset splits into two disjoint behaviors—*“ant locomotion without
ball” and “ball control with little locomotion.” When contrastive pre-training treats
states from both modes as interchangeable positives, the resulting embedding cannot
reconcile these conflicting skills. As a result the learned policy either stands still or
walks off without the ball, never integrating locomotion and ball control into a coherent
strategy.

6 Discussion

A core limitation of our contrastive pre-training is that positive and negative pairs are sampled
only within a single trajectory; we lack a reliable way to judge whether a state from a different
trajectory is H-step—reachable. This isolates each roll-out in its own place of representation space
and makes “stitching” trajectories together difficult for long-horizon or compositional tasks. The
issue is compounded when demonstrations are non-Markovian: exploratory or redundant actions hide
the true notion of progress and can mislead the encoder. Future work could explore (i) principled
mechanisms to create cross-trajectory pretraining pairs, and (ii) objectives that remain robust in the
presence of meaningless/non-Markovian transitions. While our results confirm that contrastive pre-
training can give helpful signals for value- and policy-learning, systematically comparing alternative
self-supervised objectives may discover more data-efficient embeddings.

The main challenges we faced during this project were time and resource constraints. We encountered
repeated issues with AWS, including difficulties in launching or maintaining instances, which signifi-
cantly slowed down our progress. Additionally, each task required both contrastive representation
training and policy training, making the overall process time-consuming. Combined with the AWS
issues, this made it particularly challenging to run as many experiments as we initially planned.

7 Conclusion

In conclusion, we proposed a contrastive pretraining approach for goal representation learning
in offline hierarchical reinforcement learning. By decoupling representation learning from value
estimation, our method addresses a key limitation of HIQL, which is its reliance on noisy value-based
embeddings, and instead produces stable, horizon-aware subgoal encodings from unsupervised data.

Our method demonstrates significant improvements in complex navigation and manipulation environ-
ments, outperforming existing baselines on PointMaze, AntMaze, and Cube tasks. In particular, it
achieves up to around 20 to 40% higher success rates than GCBC and offers consistent gains over
HIQL on several tasks. However, we also identified limitations in multi-skill and stitching-heavy
environments such as AntSoccer and HumanoidMaze, where contrastive pretraining struggles to
reconcile diverse behaviors or sparse long-horizon dependencies.

These findings highlight both the potential and the current limitations of using contrastive learning
for goal representations. Future work could explore ways to incorporate temporal structure, task-
specific knowledge, or cross-trajectory information to improve generalization. It may also be
valuable to design hybrid objectives that capture not just spatial reachability but also meaningful task
progress. Overall, our approach points toward promising directions for making offline hierarchical
reinforcement learning more robust and scalable through better representation learning.

8 Team Contributions

Our team work on method and experiments designs together, and also discuss and write report
together in person or over the zoom, with more details of some work split:

* Yongce Li: Work on method implementation and contrastive representation learning, as
well as help on experiment running.



* Xiaoyue Wang: Work on contrastive representation learning and experiment running and
evaluations.

All other related works are done together.

Changes from Proposal Our original Proposal is about to enhance the capability of current
model-based reinforcement learning approaches to effectively handle long-horizon planning tasks
in the Minecraft game environments. We found that Minecraft environments are too complex and
time-consuming to complete our experiments within the project timeline. To better align with our
constraints, we identified a paper with a similar original idea (Park et al., 2023)). However, the paper
shows that the state-based methods underperform compared to pixel-based ones. We hypothesize
that this is due to poor sub-goal representation caused by inadequate encoding. Therefore, we aim to
improve sub-goal representation within the algorithm.
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A Experiment Trajectory Samples

We provided some sample trajectories for succuss cases in our experiments.

S

Figure 6: Succuss Trajectory Sample of pointmaze-large-stitch dataset

Figure 7: Succuss Trajectory Sample of antmaze-medium-explore Dataset

EAE e

Figure 8: Succuss Trajectory Sample of antmaze-large-explore Dataset
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Figure 9: Succuss Trajectory Sample of cube-single-play Dataset
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